DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge
نویسندگان
چکیده
In the field of energy transport, High-Voltage DC (HVDC) technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE) insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.
منابع مشابه
Space Charge Accumulation under the Effects of Temperature Gradient on Solid Dielectric Dc Cable
It is well known that existence and accumulation of space charge within the insulating material poses threat to the reliability in the operation of dc power cables. When the cables are loaded under high voltage direct current (HVDC), temperature gradient is developed across the insulation material. In this paper, commercial ac XLPE power cables were used under an application voltage of 80 kV dc...
متن کاملStudy by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress
Multidielectric polyethylene is a material that is generally employed as insulation for the HVDC isolations. In this paper, the influence of temperature on space charge dynamics has been studied, low-density polyethylene (LDPE) and Fluorinated Ethylene Propylene (FEP) sandwiched between two electrodes were subjected to voltage application of 5kV (14.3 kV/mm) for extended duration of time ...
متن کاملElectrical Characterization of Polymeric DC Mini-Cables by means of Space Charge & Conduction Current Measurements
ii Τὸ εὖ γίνεσθαι μὲν παρὰ μικρόν, οὐ μὴν μικρὸν εἶναι. Abstract The world's first commercial High Voltage Direct Current (HVDC) transmission link was built in 1954 between the Swedish mainland and the island of Gotland. At that time, it was proved that HVDC transmission is technically feasible. Since then, HVDC cable systems have been used worldwide in electrical energy transportation. Most HV...
متن کاملA Mechanism Underlying the Electrical Polarity Detection of Sensitive Plant, Mimosa Pudica
Natural indicators of the electrical polarity of a direct current (DC) source is limited to semiconductor based diodes and transistors. Recently a novel bio-natural indicator of the polarity of a DC source have been reported. Mimosa Pudica or sensitive plant is found to be a natural detector of a DC source polarity, however the mechanism underlying this phenomenon is not known. This paper aims ...
متن کاملModel to estimate the trapping parameters of cross-linked polyethylene cable peelings of different service years and their relationships with dc breakdown strengths
In this study, an improved trapping/detrapping model was used to simulate the charge dynamics in cross-linked polyethylene peelings from different-year aged cables. Injection barrier of trapping parameters was estimated by the model fitted to experimental data for each type of sample. Moreover, dc breakdown tests were operated on those samples. It has been found that the dc breakdown strength o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017